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A shallow three-dimensional hump disturbs the two-dimensional incompressible 
boundary layer developed on an otherwise flat surface. The steady laminar flow is 
studied by means of a three-dimensional extension of triple-deck theory, so that there 
is the prospect of separation in the nonlinear motion. As a first step, however, a 
linearized analysis valid for certain shallow obstacles gives some insight into the flow 
properties. The most striking features then are the reversal of the secondary vortex 
motions and the emergence of a ‘corridor’ in the wake of the hump. The corridor stays 
of constant width downstream and within it the boundary-layer displacement and 
skin-friction perturbation are much greater than outside. Extending outside the 
corridor, there is a zone where the surface fluid is accelerated, in contrast with the 
deceleration near the centre of the corridor. The downstream decay (e.g. of displace- 
ment) here is much slower than in two-dimensional flows. 

1. Introduction 
The basic problem of determining the fluid flow over a hump embedded in a boundary 

layer has applications in atmospheric dynamics, aerodynamics and other fields (e.g. to 
the phenomenon of trip-wire transition). Most recently interest in such flows has 
revived because of the increased concern with air flow over mountains. Both in 
atmospheric dynamics and in aerodynamics, some considerable study is necessary 
because of the three-dimensionality in practice and the likelihood of sizeable separa- 
tions occurring over rough surfaces such as hills, mountain ranges or aircraft wings. 
These separations can have a drastic effect on the flow drag, and at the same time two- 
dimensional flow studies (e.g. Smith 1973) may oversimplify the problem. 

Here we consider the laminar motion produced when a two-dimensional boundary 
layer is disturbed by a three-dimensional hump situated on the boundary (figure 1). 
Since separation is one of the prime concerns in practice, we choose a hump whose size 
enables us to apply immediately a generalization to  fully three-dimensional situations 
(cf. Smith 1 9 7 6 ~ )  of triple-deck theory (Stewartson 1974). This is set out in 0 2 below. 
It is believed that the generalized triple deck will allow solutions regular at separation, 
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FIGURE l. The co-ordinate system and the flow problem of an oncoming two-dimensional boundary 

layer 0 encountering a three-dimensional obstacle (shown shaded). 

so that our choice of dimensions for the obstacle yields a problem in which three- 
dimensional separation, displacement and upstream influence (see Sykes 1978) can be 
incorporated. The 'triple-deck hump' is the shallowest one which can produce separa- 
tion. If the obstacle is shallower than our choice, the motion is entirely linear and 
attached flow results. Conversely, if the obstacle is steeper, then there is the likelihood 
of a gross three-dimensional separation, although if the streamwise length scale is 
shorter as well the separation may not be gross but then the displacement effect and 
the upstream influence are diminished (see Brighton (1977), who studies a number of 
other length scales). Given the importance of the triple-deck size, then, we deal with 
linearized theory as the first step and examine whether any notable effects are then 
incurred by the insertion of the three-dimensional obstacle. We find below (see $4) 
that indeed there are some pronounced effects. These include the reversal of the vortex 
motions beyond the peak of the obstacle and a ' corridor ' phenomenon in the boundary- 
layer displacement and axial shear stress. The corridor is a concentrated region that is 
found to develop behind the obstacle, in which the whole boundary layer is displaced 
vertically by a relatively large amount. Near the corridor centre the surface fluid is 
significantly retarded, but away from the centre it is significantly accelerated. More- 
over, the corridor does not spread out downstream; rather, it stays of a width com- 
parable with that of the hump. Outside, in a wedge-like zone up to an angle of about 
30" from the corridor, there is acceleration of the surface fluid but at  a rate generally 
much less than that within the corridor. 

The fluid is assumed to be incompressible and its motion to be laminar and steady. 
The Cartesian co-ordinates L(x, y, z )  denote distances in the directions of the oncoming 
boundary layer (horizontal), of the surface normal to that boundary layer (horizontal) 
and of the normal to the surface (vertical) respectively. Here L is the typical length 
scale of the oncoming boundary layer, and the origin is centred at  the obstacle. The 
fluid velocity is written as Um(u, v, w) and its pressure is ppm U s ,  where U, and p ,  are 
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the velocity and density a t  the edge of the planar boundary layer. The Reynolds 
number is then Re = U,L/v, v being the kinematic viscosity of the fluid, and we 
suppose that Re is large. 

2. The flow structure 
The flow problem is summarized in figure 1. It is supposed that the motion far away 

from the obstacle consists of a two-dimensional boundary layer (wherein z - Re-4) 
moving in the x direction, outside which the flow is essentially uniform (u  = 1). If the 
boundary-layer profile is U,(Z,x), where z" = Reix, then, near the hump at n: = 0, 
U,(Z, x) -+ U,(Z), say. Here U,(Z) has the properties U,((Z) N hZ as z" -+ 0 and U,(oo) = 1 
and h is a given positive constant. The flow approaching the hump from upstream is 
therefore 

u = U,(Z) + O(x)  + O(Re-*), 
w = O(Re-J), p = O(Re-d) 

v = 0, 

for x small and y, z" = O( 1). For convenience we introduce the small parameter E defined 
by @Re = 1, and mainly consider fully three-dimensional motions below; quasi-two- 
dimensional cases are mentioned a t  the end of this section. The three-dimensional 
hump is assumed to have height O(Le5) and horizontal dimensions O(Le3). The structure 
of the flow about the hump then takes on an extended triple-deck form, generalized 
from that of Smith ( 1 9 7 6 ~ ) .  Some of its features are familiar from previous triple-deck 
studies (see Stewartson 1974) but the three-dimensionality plays an active role and so 
we briefly sketch the development of the solution. 

The typical horizontal length scale is O(Lc3),  and in the main deck (I), where z" is 
finite, 

(2.2a, b )  u = U,(Z) + e A ( X ,  Y )  Vk(Z), v = e2D(X ,  Y)/U,(Z), 

Here (x, y) = G ( X ,  Y )  and A, D and P are unknown functions of ( X ,  Y )  which tend to 
zero as X + --a [to join with (2.1)] but are assumed to be not identically zero. 
Solutions (2.2) satisfy the Navier-Stokes equations to leading order. They represent 
a non-uniform vertical displacement w of the boundary layer accompanied by a 
small inflow or outflow v generated by the induced horizontal pressure gradient 8Pl8 Y .  
The vertical displacement then sets up a potential flow in the upper deck (11) just 
outside I ,  where X ,  Y and Z = c 3 2  are O(1). The disturbances to the mainstream 
u = 1 (and v = w = p = 0 )  are O(e2) in I1 and the pressure is governed by Laplace's 
equation. Matching the pressure and velocities between I and 11, and ensuring that 
the O(e2) disturbances decay at  the outer edges of 11, gives 

1 Sm jm (8zA/8<2)d(d~ P ( X ,  Y )  = -- 
277 - m  -m[(X-<)2+(Y-?j )2]* '  (2.3) 

Thus as usual the upper deck serves to provide a relation between the main-deck 
displacement and the pressure throughout the boundary layer. Lastly, in the lower 
deck (111), the motion takes on a viscous character. Here 
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au av aw 
ax aY az -+-+- = 0, 

au au au ap a w  u-+v-+w-=--+- ax ay az ax az2' 

av av av aP a 2 v  -+ v-++- = --+- 'ax ay az ay az2* 
The boundary conditions for (2.5) are 

( 2 . 5 ~ )  

(2 .5b)  

( 2 . 5 ~ )  

U = V = W = 0 at Z = h F ( X ,  Y ) ,  ( 2 . 6 ~ )  

U N h ( Z + A ( X ,  Y)), V N D ( X ,  Y ) / A Z  as 2 -+ 00, ( 2 . 6 b )  

U + h Z ,  V + O ,  W+O, P - t O  as X - t - m ,  (2.6~) 

together with the pressure-displacement relation ( 2 . 3 )  and ( 2 . 2 e ) .  Conditions (2 .6 )  
reflect (a )  the no-slip constraint a t  the hump (z = he5F(X, Y ) ,  h being an O( 1 )  constant), 
(b)  the matching with the main deck and (c) the continuation with the oncoming 
profile of (2.1). 

Perhaps the most striking feature of the viscous flow is the large size of v in (2.4), 
implied by the growth of (2.2 b )  a t  the lower edge of the main deck and required also by 
mass conservation. It means that the secondary flow (v, w) in I11 is basically one- 
dimensional (v % w), in contrast with that in I ,  where v N w. Again, the velocity profile 
in the Y direction must be jetlike, being zero both a t  the hump and in the outer reaches 
of 111. For a three-dimensional hump, the non-uniform vertical displacement of the 
majority of the boundary layer causes a non-uniform pressure variation, through the 
potential flow outside, and so a non-uniform pressure is transmitted back through the 
boundary layer. I n  I, this induced pressure force has only a minor effect on the stream- 
wise and vertical flow. But simply through conservation of momentum, it gives rise 
directly to the horizontal motion normal to the oncoming stream in I .  The velocity of 
the latter motion must then increase near the wall, to compensate for the reduction in 
the oncoming velocity, and in I11 it interacts significantly with the streamwise 
velocity itself, being of the same order of magnitude. 

The whole flow about the hump depends on the solution to the viscous problem (2.5)) 
with conditions (2.6)) ( 2 . 3 )  and ( 2 . 2 e ) .  The main-deck and upper-deck flows respond 
passively to the behaviour in the lower deck. A numerical approach is intended for the 
basic problem when h is O(1) (Sykes 1978).  Flow separation then would seem a likeli- 
hood and would possibly be a regular phenomenon, as in the two-dimensional studies 
of nonlinear triple-deck problems (Stewartson & Williams 1969; Smith & Stewartson 
1973).  As a first step, however, we discuss in $5  3 and 4 the linearized solutions relevant 
when h is small. 

It seems worth while noting here that, if the hump has length 9 Ls3 in the y direction, 
then the motion is quasi-two-dimensional. For example, for a hump whose horizontal 
dimension normal to the mainstream is O(L), v is O(e5) in I, O(e5) in I1 and O(e4) in 111. 
The equations controlling U ,  W and P are then two-dimensional ones, and v follows 
from a linear equation. The results in $4 confirm this. 
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3. Linearized theory (h 4 1) 

solution is described by 
If h is small the oncoming profile is only slightly perturbed by the hump, and the 

(3.1) u = A Z + h U ,  ( V ,  w, P , A ,  D )  = h( v, iq H, & D ) .  
Terms of order h2 are neglected here and in (2.5), which gives linear equations for the 
barred variables in (3.1). To solve (3.1) use is made of the double Fourier transform, 
denoted by ** and defined by 

Then we have the controlling equations 

ikc**+itV**+aV**Jaz = 0, (3.3a) 

hikZV** +hF** = - ikH**(k, 1) + a2c**/m, (3.3b) 

(3.3c) hikZV** = -iZp**(k, I )  +a2V**JaZ2 

and the boundary conditions (2.6) become 
- a** = - hF**(k, l ) ,  V** = v** = 0 a t  z = 0, (3.4a) 

u** +- hB**(k, l ) ,  v** - B**(k, I)/hZ as Z --f co, (3.4b) 

8**, V**, F**, i"** -+ o as x -+ - co. (3.4c) 

The pressure-displacement relation is now 

(k2+12)4p** = ,@A**. (3.5) 

v** = iZP**(ikh)-W(t), ( 3 4  

As in Smith (1976a, b), the solution for v** comes out first, from (3.3c), and is 

and larg ( i l ~ A ) ~ l  < nn. Then ( 3 . 3 ~ 4  b) give 

--- "** - 1 2 @ * * Y ( t )  + B(k, 1 )  Ai ( t ) ,  
at (ileh); 

where Ai is the Airy function and the unknown function B(k, 1) satisfies 

B(k, I )  Ai' (0) + hPP**/(ikA)Q = ikp**/(ikA)# (3.9) 

from (3.3b) a t  Z = 0. Integration of (3.8) with respect to Z from 0 to co, with (3.4), then 
yields - hF** + &B(k, 1) = hB**. (3.10) 

Hence, from (3.9), (3.10) and (3.5) the pressure transform, in particular, is determined as 

P**(k,Z) = F**(k , l ) / [ -  (k2+12))k-2+y-t(k2+Z2) ( ikh)-f] ,  (3.11) 

where y = ( -  3Ai'(O))g = 0.8272. 
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FIGURE 2.  Curves of constant pressure P .  ---, negative values; 

-, positive values. The contour intervals are 0.02. 

Given P**, A** follows from (3.5),  D** from (2.2e) and the shear stresses a t  the 
surface, T~ = a U ( X ,  Y ,  O)/aZ and TY = a P ( X ,  Y ,  O)/aZ, stem from (3.6) and (3.8). We 
omit the precise details. Also, the influence of the factor A can be extracted by defining 

(P, A ,  D,Tx, ;iY) = (AW,, A-QA,, h~D,,ATIX,Arj ly)  

so that the terms with subscript 1 are independent of A. Below we omit the subscript I 
for convenience (or, equivalently, take A = 1). 

4. Linearized results and discussion 
The results for a linearized hump are presented in figures 2-8. Rather than express 

the double inversion of (3.1 1) in a real closed form (as in Stewartson 1970; Smith 1973), 
it proved more flexible to use a fast-Fourier-transform (FFT) numerical approach 
available a t  the Meteorological Office, Bracknell. Various grid sizes and integration 
ranges were employed and their results compared, to ensure satisfactory accuracy. 
Also, two analytical checks supported the results obtained numerically. First, the 
two-dimensional case considered by Smith (1973, figure 3) was verified. Second, the 
results far from the hump compared favourably with the asymptotic solutions 
obtainable in closed analytic form [see (4.2)-(4.8) below]. 
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FIGURE 3. Curves of constant is. Dashed and solid lines 
as in figure 2, with a contour interval of 0.02. 

The three-dimensional shape studied was defined by 

x2+ y2  

cost [#m(X2 + Y2)3] for 

0 otherwise. 
F ( X ,  Y )  = 

Curves of constant pressure P are drawn in figure 2. Along the 'peak line' ( Y = 0)  the 
pressure exhibits the two-dimensional trend (Smith 1973), rising upstream, dropping 
fast over the front of the hump, reaching a negative minimum just behind the highest 
point and then rising fast on the leeward side before dropping slowly back to zero 
downstream. To the sides of the peak line the same trend emerges, but is less accen- 
tuated. Hence ahead of the hump, for example, a favourable pressure gradient is 
established in the + Y direction (see next paragraph) for Y > 0. Far away, the flow 
acquires an essentially inviscid character as far as the pressures P and are concerned 
and the hump acts as a delta function. Thus we find that, for X 2  + Y 2  9 1,  

P ( X ,  Y )  - F**(O, 0 )  (2x2- Y2)/2?7(X2+ Y2)%, 

D ( X ,  Y )  - - 3F**(0,0) X Y / 2 n ( X 2  + Y2)@.  

Constant-B curves are presented in figure 3. They give effectively the Y velocity 
at  the edge of the lower deck 111, from (2.6b). Owing to the induced pressure gradient 

( 4 . 2 ~ )  

(4.2b) 
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FIGURE 4. Constant-?y curves. Dashed and solid lines as in figure 2, 
with a contour interval of 0.02. 

in the Y direction this Y slip is positive upstream. It changes sign near the peak of the 
hump, however, and thereafter is negative. Thus, a t  the edge of the lower deck, fluid is 
driven away from the peak line upstream, to enable the fluid to negotiate the obstacle, 
while downstream the slip effect is roughly the opposite. Simultaneously the whole 
secondary flow upstream in I11 moves outwards from the peak line, as the curves of 
azimuthal shear stress Iy in figure 4 show. So the hump has a source-like effect on the 
secondary flow upstream (see below). Once the hump is encountered, TY reverses sign, 
reaching a negative minimum just beyond the hump’s peak, and then becomes 
positive again immediately downstream of the hump. Hence, near the surface, fluid is 
drawn towards the area just leeward of the obstacle, before drifting outwards at a 
slower rate further downstream. 

Figure 5 indicates the behaviour of the boundary-layer displacement ( - A ( X ,  Y ) ) .  
Along and near the peak line the lower deck is displaced vertically upwards throughout 
the motion, with the maximum displacement occurring just after the hump’s peak. 
Indeed, downstream the upward displacement appears to be confined broadly to a 
‘corridor’ whose width in the Y direction is approximately that of the hump. Only 
close to the hump does the upward displacement exhibit any significant spreading from 
this corridor. The upward displacement there falls off quite rapidly in the Y direction, 
while upstream and downstream the displacement is downward outside the corridor. 
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FIGURE 5 .  Constant-2 curves. Dashed and solid lines as in 
figure 2, with a contour interval of 0.04. 
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The relatively small upward displacement near the peak line ahead of the hump is due 
to the pressure rise and the associated fall in axial shear stress (see below) there, whereas 
the downward motion away from the peak line seems to be necessary for mass conserva- 
tion. Similar phenomena arise downstream, inside and outside the corridor, as the flow 
returns to  its original two-dimensional state. Near the hump the increased displace- 
ment effects seem to be physically sensible because of the presence of the physical 
obstruction. 

A corridor effect downstream is also evident in the axial shear stress rx (figure 6). 
Near the peak line 7x drops slowly upstream, before rising rapidIy over the front of the 
hump and falling even more rapidly a t  the rear. Downstream 7x returns to its original 
value, from below in the centre of the corridor but from above near the edge of the 
corridor. The upstream trend here is in line with the pressure rise, and the ensuing 
development of rx is similar to that in a planar flow (Smith 1973). Outside the corridor 
downstream there are some curious effects. The most marked are the small zones far 
downstream where the axial shear stress rises slightly above the original value, in 
contrast with the stress deficit in the middle of the corridor. The cause seems to lie in 
the concentration of displacement in the corridor, whereas the axial and azimuthal 
pressure distributions are more widespread. The falling displacement dominates the 
behaviour in the corridor far downstream but has very little influence outside, where 



172 F.  T. Smith, R. I .  Sykes and P. W .  M .  Brighton 

2 

x 

0 

-2 

-2 0 2 
X 

FIGURE 0. Curves of constant ( 7 ~ -  i)/h. Dashed and solid lines 
as in figure 2, with a contour interval of 0.1. 

the two favourable horizontal pressure gradients combine to produce the overshoot in 
axial shear stress. 

The existence of this corridor effect may be verified by analysing the flow properties 
far from the hump. When X (or Y) is large, the pressures and D take on the virtually 
inviscid forms given in (4.2), since the boundary-layer displacement acquires a point- 
disturbance character (A** x - F**(O, 0 ) ) ,  so that the two pressures exhibit very 
little concentration or wake behaviour. By contrast, the residual displacement A and 
axial shear stress T~ downstream for X % 1 are due totally to viscous action and do 
become concentrated in a wake or corridor, as follows. For the axial shear stress, 
given by 

( T X  - 1)** - - 3 Ai (0) (ik)+P**(k, 1) (""- - 12 ] (4.3) 
h (k2+ i?)) [l +y-*(ik)+ (k2+ Z2)4] y4 9Ai2(0) ' 

and for the displacement A, the solution has quite distinct features when X 2  + Y 2  1 
depending on whether or not Y is O( 1)  with X > 0 (the region containing the corridor). 
When Y is large and O ( X ) ,  implying that 1 % 1 =; O ( k ) ,  

)PI. (4.4) 
(Tx - I)** 

M 3Ai (0) F**(O, 0) h 



A boundary layer encountering a h u m p  
\ 
\ I \ 

173 

-2 

FIGURE 7. The axial skin friction far from the obstacle (a) when 0 is of order unity, outside 
the corridor, and (b) when Y is of order unity, inside the corridor. 

The inverse transform of (ik)* (k2 + P ) - 8  is 

where S ( a ,  b ;  c ;  2) is the hypergeometric function (Gradshteyn & Ryzhik 1965;, 
p. 1039). If we denote (4.5) by G(t") Y-*, where t^ = X2/Y2,  then 

a2 -)-)- 1 a2  G(f) 
9Al2(0) aY2 YQ (7x - 1)/3 Ai (0) P**(O, 0) h z - (Y-tm+ (y-t - 
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Hence 7x - 1 M [function of 0 = tan-l( Y/X)]/XLsL.  The function H(t*), drawn in figure 
7 (a), was calculated by evaluating G(8) from the series expansions of the hypergeo- 
metric functions F and then differentiating numerically. However, at 0 = 0 the 
function is singular and H - 0 - 2  as 0 -+ 0. Hence a different representation is called 
for near the X axis, in fact when Y is O(1). The dominant contribution to 7x then 
comes from small values of k, with I finite, when 

(7x- 1)"" 
M 3Ai(O) (4.7) 

where 

and the integrals have principal values. As Y -+ co now, rx - 1 falls off like Y-2 and the 
solution (4.8) matches exactly with that in (4.6) as 0 -+ 0 + . Numerical integration of 
(4.8) for the hump in (4.1) gives the graph in figure 7 ( 6 ) .  The wake effect suggested by 
the previous global results is confirmed, since there is a corridor of approximately half 
the width of the hump in which the surface flow is retarded (7x < 1) .  Outside this, and 
as far as 30' from the X axis, the surface flow is accelerated (7x > 1). At greater values 
of 0 the surface flow is again decelerated, apart from in a small zone between approxi- 
mately 80" and 130", where there is a minor acceleration of the surface fluid. The 
corridor effect evident in the displacement A may be confirmed by a similar analysis, 
as can a corridor phenomenon occurring in 5 y. The perturbation velocity fl in the wake 
has the same Y profile as (4.8) and depends on the similarity variable Z / X i .  Its 
maximum decays as X-e, as does 2, while TY cc X S  in the corridor. Outside the 
corridor, ;i, oc ( X z  + Y2)-'&. No corridor occurs upstream, although the original results 
did show some concentration there (because of the FFT's periodic nature in the axial 
direction) which has to be neglected. 

Aside from the very existence of the corridor effect, several other points stand out. 
First, the velocity deficit in the corridor decays more slowly ( cc X-g) than in the wake 
behind a two-dimensional hump (where the decay is like X-8; Smith 1973). Second, the 
pressure gradient is insignificant in the corridor, decaying faster than the inertial 
forces, whereas in the planar case the pressure gradient itself determines the rapid 
decay. Third, the corridor does not spread significantly downstream [being confined to 
I Y I < 0.53 for the hump (4.1)]. Intuitively one would expect any viscous effect, such as 
the corridor, to spread out as the distance downstream increases, owing to lateral 
convection and viscous diffusion. Here, however, the lateral convection is small 
because h is small, the viscous diffusion laterally is small owing to the shallowness of 
the hump (cf. Jackson's (1973) analysis of a narrow wake in a boundary layer with 
lateral diffusion as important as vertical diffusion) and both are overwhelmed by the 
concentrated displacement of the boundary layer behind the hump, producing 
a corridor of constant width. Fourth, the precise details of the corridor flow, even far 
downstream, do depend on those of the hump itself [from (4.8)], whereas most of the 
flow outside the corridor is of a global, inviscid kind and therefore is dependent only on 
the hump's total volume, i.e. the constant B**(O, 0) in (4.6). 

The secondary flow (w, w) diagrams in figure 8 confirm many of the above aspects. 

g( Y )  = f m  P ( X ,  Y ) d X  
--m 
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FIGURE 8. Secondary-flow sketches for the hump (4.1). Secondary velocities (v,w) are shown 
(a)  upstream of the hump, ( b )  on its forward face, (c) on the hump’s leeward side and (d) behind 
the hump. The dashed line indicates the upper edge of the lower deck. 

The simple source-like trend upstream is followed by some major adjustments near 
the hump. First, fluid near the surface starts to be drawn inwards (towards the peak 
line) near the hump’s peak, so that a vortex motion appears. Then, over the back of 
the hump, the entire lower-deck flow acquires a sink-like form, in order that the fluid 
may encircle the obstacle. Finally, beyond the hump, the displacement forces the 
surface fluid eventually to be expelled, while the fluid above the lower deck is drawn 
in, and so another vortex motion is set up. This vortex rotates in the opposite sense to 
the flatter, faster-decaying vortex near the rear of the hump (cf. Smith 1 9 7 6 ~ )  b )  and 
is generated by the vorticity interaction between the shear perturbation and the basic 
shear (as in the horseshoe vortices of Sedney 1973). 

Further details of the linearized theory will be given by Brighton (1977) and Sykes 
(1978). We believe that a number of further investigations are suggested by this work. 
Other shapes need to be considered, to investigate the influence of symmetry with 
respect to the X axis in (4.1). More significant developments however are those con- 
cerned with the nonlinear problem of $2, where separation seems likely, or with 
stratification effects or three-dimensional oncoming profiles, all of which are more 
applicable to atmospheric dynamics and aerodynamics, for example. 

Professor 0. R. Burggraf has informed us of his investigations of the supersonic 
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analogue of the three-dimensional triple deck. One of us (P.W.M.B.) is grateful to the 
Science Research Council for financial support. 
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